
Accelerating Web-based Graph Visualization with
Pixel-Based Edge Bundling

Jieting Wu, Jianxin Sun, Xinyan Xie, Tian Gao, Yu Pan, Hongfeng Yu
University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract—We present a novel web-based framework, named
Pixel-Based Edge Bundling (PBEB), for effectively and inter-
actively visualizing large graphs. Our framework combines an
image-based edge-bundling method and a parallel texture-based
processing scheme, allowing us to effectively and efficiently
compute edge similarities using kernel density estimation and
subsequently group these edges into bundles based on their
similarities. We discuss several challenges related to developing
large-graph visualization on web-based platforms. To accelerate
the edge bundling process and enable interactivity in web-based
environments, we leverage texture-based parallel processing, a
standard feature of WebGL. Our framework optimizes an end-to-
end process, from bundling to rendering, enabling practical and
interactive visualization of large graphs in a web-based setting.
We demonstrate the superior performance of our framework
by conducting comparisons with existing web-based and CUDA-
based edge-bundling methods using various standard graphics
cards on different devices.

Index Terms—graph visualization, edge bundling, similarity,
GPU, WebGL.

I. INTRODUCTION

Graphs or networks are extensively employed to represent
data relationships in diverse fields, such as biology, transporta-
tion, deep learning, and so on [1]. Visualization, especially
web-based solutions (e.g., D3 [2]), have provided a versatile
way for researchers and practitioners to visually analyze and
detect potential patterns within graph datasets. However, as
data sizes continue to increase substantially, an effective
and interactive visualization of large graphs on web-based
platforms becomes an increasingly formidable task. While
researchers have introduced various approaches to tackle large-
graph visualization, effectively addressing issues related to
visual clutter and performance bottlenecks remains a non-
trivial task. These challenges have hindered the successful
integration of interactive large graph visualization into web-
based applications.

First, large graphs typically contain numerous nodes and
edges that present intricate interconnections between nodes.
On the other hand, many displays, in particular those found
on portable devices, often have limited screen space. Conse-
quently, a straightforward visualization method (e.g., a node-
link diagram) for large graphs can easily result in extensive
overlapping and crisscrosses among nodes and edges, incurring
server visual clutter that is difficult to interpret. While some
exiting efforts [3]–[5] have developed applications that can
adjust to different devices for web-based graph visualization,
they have primarily dealt with moderately sized graphs. The
challenge of effectively visualizing large graphs with reduced

visual clutter with constrained scree sizes remains an open
problem.

Second, it is challenging to implement interactive processing
and rendering for large graphs on web-based platforms that
often possess limited processing capabilities. The availability of
standard parallel programming libraries and architectures, like
CUDA and OpenCL, is constrained in web-based environments.
This limitation becomes especially problematic when there is a
need for client-side processing to enable interactive visualiza-
tion of large graphs on a web browser. While resorting to server-
side processing [6] can partially mitigate this issue, it cannot
guarantee full interactivity, as it may still encounter potential
problems like network latency and service interruptions.

We aim to tackle the above challenges related to visual clutter
and performance bottlenecks by developing an effective and
efficient method, named Pixel-based Edge Bundling (PBEB),
for visualizing large graphs on web-based platforms. Our
approach is based on edge bundling, a technique that has
been demonstrated to be practical for visualizing large graphs
across various applications and scientific domains [7]. Edge
bundling methods can reduce visual clutter by visually grouping
or clustering the edges of a node-link diagram of a graph based
on a similarity metric. This strategy can reduce excessive edge
crossings and unveil the high-level patterns within the graph,
thus mitigating visual clutter.

To enable parallel processing on web-based platforms, we
harness the parallel computing capability of WebGL within
PBEB to accelerate the edge bundle process when accessed
through web browsers. When handling an input graph, PBEB
employs the concept of kernel density estimation [8] to
iteratively calculate the density map of the graph edges to form
edge bundles. In addition, we develop a pixel-based method in
PBEB to leverage the parallel functionalities of WebGL within a
web browser. This approach enables the parallelization of edge
bundling processing, which traditionally demanded advanced
GPU parallel processing platforms [8]–[11].

Our contribution is twofold. First, we develop a web-
based framework to visualize large graphs effectively by
leveraging edge bundling to identify edge similarities. Our
framework yields visualization results that can uncover the
overall structures and backbones of large graphs within web-
based environments. Second, we address the challenge of
parallel processing in edge bundling using a web-based
method, minimizing data transfers between CPU and GPU
to enhance real-time interaction performance. Our experiments
demonstrate that our web-based framework outperforms the

existing approach [11] by a significant speedup. At the same
time, we ensure the high quality of our visualization results
on web-based platforms.

II. RELATED WORK

This paper focuses on building a web-based framework
for effective and interactive large graph visualization. We
refer those interested in information visualization to the
following work and surveys. Liu et al. [12] presented a
comprehensive survey and key insights into the fast-rising
information visualization domain. Landesberger et al. [13] and
Beck et al. [14] surveyed many techniques for large graphs and
dynamic graphs, respectively. Herman et al. [15] and Vehlow
et al. [16] had conducted comprehensive surveys for graph
visualization. In this section, we will first recap some of the
web-based tools and studies that tackle node-link diagram
visualization for large graphs. We will also recap some of the
edge bundling techniques since our framework is based on an
edge bundling method. For a comprehensive survey of edge
bundling methods, we redirect readers to the edge bundling
survey [7].

Web-based visualization systems have provided a portable
means for designers and researchers to build customizable
visualization systems. Protovis [17] was a visualization system
that employed HTML, JavaScript, and Scalable Vector Graphics
(SVG) to generate interactive web-based visualization. A web-
based library Document-Driven Documents (D3) [2] emerged
as a new visualization system to directly manipulate page
content elements by binding data to document elements. The
performance of D3 was demonstrated to be twice as fast as
Protovis. However, when the problem size reaches a certain
large amount, e.g., visualizing thousands of edges with force-
directed layouts (i.e., force-directed node-link diagram or
force-directed edge bundling graph) [3], the performance of
the interactive visualization drops drastically. A web-based
implementation [4] embedded Multilevel Agglomerative Edge
Bundling (MINGLE) [18] in graph visualization for web access.
To overcome the performance issue of the traditional web-based
visualization system, Texture-based Edge Bundling (TBEB) [5]
employed the texture feature of WebGL to accelerate bundling
processes using the capability of standard GPUs for web-based
force-directed edge bundling graphs. It achieved 240× speedup
compared to the implementation of D3 using a graph with
approximately two thousand edges. However, this work can
not handle very large graphs due to the texture size limitation.
Hence, it is less scalable for large graphs. Our PBEB framework
has enhanced the scalability and enabled the visualization of
larger graphs on web-based platforms.

The basic edge bundling methods used in our framework are
Kernel Density Estimation-based Edge Bundling (KDEEB) [8]
and CUDA Universal Bundling (CUBu) [10], which are
the image-based edge bundling methods. Telea et al. [19]
first introduced the image-based method for edge bundling
visualization of graphs. Given a graph layout, they rendered
the clusters based on an image-based technique that used kernel
splatting. The bundles were visualized using the overlapping

shaded shape generated by the kernel splatting, such that the
coarse-scale graph structures were emphasized. The following
work, KDEEB [8], built a skeleton for edge merging. Using
kernel density estimation, the method first transformed the
input graph into a density map. Sample points of edges
moved towards the local density maxima to form bundles.
Bottger [20] worked towards visualizing the 3D correlations
between neurons inside the human brain for medical data. It
used the advection method of KDEEB. Peysakhovich et al. [9]
extended the basic idea of KDEEB to distinguish bundles
based on different edge attributes. CUBu [10] used GPU
parallelization to accelerate density assessment and enabled
bundling of a graph with a million edges at interactive frame
rates. It also coupled different attributes and metrics in its
density assessment, enriching a wide variety of styles of graph
layouts. The Fast Fourier Transform Edge Bundling (FFTEB)
method [11] addressed the scalability of density estimation
by transforming the density space to the frequency space and
was slightly faster than CUBu. Furthermore, the approach of
Edge Bundling Using Moving Least Squares Approximation
(MLSEB) [21] utilized a distance-minimizing approximation
function to generate high-quality bundle effects. It demon-
strated scalability and efficiency, particularly when applied to
large graphs. However, these methods require advanced GPU
parallel processing capabilities often unavailable on web-based
platforms. Our PBEB framework exploits standard WebGL
texture functionality and allows web-based edge bundling of
large graphs.

III. ALGORITHM

To enable effective visualization of large graphs on web
platforms, we choose edge bundling methods that can group or
cluster edges based on their similarities and generate a set of
edge bundles to largely decrease the excessive edge crossing
(visual clutter) in the final drawing. Many existing works have
shown the effectiveness of bundling techniques [7], [16], [22].
After carefully studying the family of edge bundling methods,
we find that the Kernel Density Estimation based (KDE-based)
methods are the most appropriate ones for our framework. The
rationale for choosing KDE-based methods is discussed in
Section III-A.

Among the fastest KDE-based methods, CUBu and FFTEB
use parallel computing architectures such as NVidia’s CUDA
or OpenCL. It is non-trivial to deploy these methods on a web-
based platform because the support of the parallel computing
library is limited. In our framework, we propose to use WebGL’s
texture feature and shaders programming to handle parallel
computing. That enables a real-time edge bundling construction
on any standard web browser. The modification required to
adapt the KDE-based method on a web-based platform and
the implementation details will be discussed in Section III-B.

A. Bundling Algorithm

Given an input of a graph drawing G = (V, E) where vertices
V = {vi ∈ R2} and edges E = {ei ⊂ R2}, our framework aims
to visually bundle the edges based on a similarity metric, and

the constructed bundles can be rendered in real-time on a
web platform. In an edge bundling visualization, an edge ei
is visualized as a straight line or curve and can be modeled
as a polyline. The polylines’ control points, namely sites, are
non-uniformly or uniformly sampled by a predefined sampling
step σ. Formally, the sites are presented as xj and ei = {xj}
accordingly [8], [10], [11], [23]. In this paper, we use KDE-
based edge bundling methods. We will describe the basic
pipeline of the KDE-based methods and how we adapt the idea
to our implementation.

The typical KDE-based edge bundling methods [8]–[11]
essentially use the mean shift principle [24]. The idea is to
iteratively group the edges using the normalized gradient of
an edge density map ρ of E. To obtain the edge density map
ρ : R2 → R+, all sites xj on all edges of E are convolved
with a radial kernel K:

ρ(x ∈ R2) =
∑
y∈P

K(
||x− y||

pR
), (1)

where K is a kernel function (Epanechnikov or Gaussian), pR
is the radius of K, and P is the set of all sites xj on all edges of
E. Next, the sites xj are advected according to the normalized
gradient of ρ with a distance pR. Formally,

xnew
j = xj + pR

∇p
||∇p||

, (2)

CUBu, one of the KDE-based edge bundling methods, proposes
a solution that a per-pixel site-density buffer C : R2 → N is
created to accumulate the sites that are rendered into C. C(x)
gives the number of sites of E that fall inside pixel x. Hence,
for each pixel y, the density map ρ is computed as:

ρ(y) =
∑

x∈T (y)

K(||x− y||)C(x), (3)

where T (y) is a disk of radius pR centered at y. Equation 2
is applied to advect sites after ρ is computed. Every edge ei
is resampled by replacing xj with xnew

j after every advection
iteration. At the final step of the bundling process, a 1-D
Laplacian smoothing is performed to remove the jitter effect
of the resulting polylines. The complexity of KDE method is
O(pI ·pN ·pS), where pI , pN , and pS are the image resolution,
the number of bundling iterations, and the counts of all sites,
respectively.

We adopt the principle of KDE-based methods in our
framework. Using KDE-based methods on web-based platforms
has multiple advantages. First, optimizing the implementation
of the mean shift principle on GPUs, KDE-based methods
reveal several accuracy and scalability advantages [7]. Edges
are sampled and accumulated into a buffer of pixels, and
normalized gradients are thus generated to advect the sampled
points. The computational complexity is independent of the
problem size of the number of edges and vertices. Hence, it is
suitable to bundle very large graphs. Second, it is feasible
to parallelize KDE-based methods. The density map can
be computed using OpenGL, WebGL, or other web-based
rendering tools by encoding the sites’ locations xj with a 2D

floating-point texture and accumulating the sites in a floating-
point image buffer. Similarly, the calculation of normalized
gradients can also be encoded with 2D floating-point textures
and advect the sites in a ping-pong buffer manner. Third,
the web-based rendering tool we use in our framework is
WebGL. To our best knowledge, it supports all web browsers
and thus ensures portability. Therefore, we choose to use the
texture feature of WebGL to implement KDE-based methods
to visualize large graphs on web-based platforms. Next, we
will describe the parallelization of KDE-based methods on web
platforms.

B. Parallelization

To enable interactive edge bundling on web-based platforms,
GPU acceleration is required for the bundling process. However,
the main challenge in performing parallel computing on web-
based platforms is that the current web-based techniques lack
direct GPU memory access support. We build our framework
upon the method of TBEB [5]. The basic idea of TBEB is to
leverage the texture feature and shader programs of WebGL to
access and operate on GPU memory. For GPU memory read,
data can be first uploaded from the main memory to the GPU
memory via texture binding and then access texture data via
texture lookup in vertex and fragment shader programs. To
perform GPU memory writes, a Framebuffer Object (FBO) can
be created and bound with a texture. This setup allows data
to be written into the FBO by rendering it onto the texture
that is bound to the FBO. The rendering function can be
customized using programs of vertex and fragment shaders
so that the data written to the FBO can be manipulated. It is
less feasible in WebGL to simultaneously read and write one
texture. To address this problem, the ping-pong buffering (or
double buffering) method [25] is used to read the input and
write the output through different textures.

The limitation of TBEB is that it requires non-uniform
sampling, i.e., each edge has the same number of sampling
points. It encodes each sample point as a 4-component pixel in
a 2-D floating-point texture. It works well with some modest
datasets with just up to a few thousand edges. It cannot address
very large graphs since the subdivision sampling may make
the sample points very large and exceed the maximal texture
size. TBEB and FDEB typically require a large number of
sampling points to generate a pleasing result [26].

To solve the scalability problem for large graphs, we
exploit the idea of the KDE-based methods. As described
in Section III-A, we use a uniform sampling method to sample
edges, such that the number of sample points is significantly
reduced. Then, the sample points can be accumulated on an
image buffer, technically, an FBO. The subsequent operations,
including kernel splatting, gradient computing, and position
updating, can be conducted in a double-buffering manner.
Leveraging the KDE-based methods and the parallel computing
of WebGL together, we realize an effective and interactive edge
bundling visualization on web-based platforms.

We name our new algorithm Pixel-based Edge Bundling
(PBEB), as it primarily operates on pixels for the scalability

Algorithm 1 PBEB
1: // Initialization
2: I ← the number of iteration steps
3: D ← the decreasing factor
4: R← the kernel radius
5: Ii ← I0 // initialize the iteration number
6: E ← the edges of the graph
7: σ ← the sampling step
8: {x} ← Function(E, σ) // sample E based on σ
9: TI ← indexing texture

10: TO ← indicator texture
11: Tin ← input position texture
12: Tout ← output position texture
13: Build location array L and indexing array TI based on
{x} and E

14: Tin ← TI // initialize Tin with TI

15: while Ii < I do
16: // Step 1: Compute histogram
17: TH ← histogram texture
18: FH ← histogram FBO
19: Bind FH with TH // bind texture with FBO
20: Render {x} into FH // accumulate pixel
21: Synchronization
22: // Step 2: Compute gradients
23: TG ← gradient texture
24: FG ← gradient FBO
25: Bind FG with TG // bind texture with FBO
26: /* render FG through TG with TH and R to compute

the gradient */
27: PARALLELGRADIENT(TH , TG, R)
28: Synchronization
29: // Step 3: Update site positions
30: FP ← position FBO
31: Bind FP with Tout // bind texture with FBO
32: /* render FP through Tout with Tin, TO and TG to

update position*/
33: PARALLELUPDATE(TO, TG, Tin, Tout)
34: Synchronization
35: // Step 4: Resample
36: FR ← resampling FBO
37: Bind FR with Tin // bind texture with FBO
38: /* render FR through Tin with Tout to resample sites */
39: PARALLELRESAMPLE(Tin, Tout)
40: Synchronization
41: // Step 5: Smooth
42: FS ← smoothing FBO
43: Bind FS with Tout // bind texture with FBO
44: /* render FS through Tout with Tin to smooth edges */
45: PARALLELSMOOTH(TO, Tin, Tout)
46: Synchronization
47: Swap Tin and Tout // swap texture for next iteration

48: Ii ← Ii + 1
49: R← R×D
50: end while

Algorithm 2 PARALLELGRADIENT(TH : input texture; TG :
output fbo; R : kernel radius)

1: for each pixel pij of TG in parallel do
2: for each pixel pθ inside the disk centered at pij do
3: // apply Gaussian splatting with radius R
4: Use texture lookup from TH , apply weighted function

W , and copy the sum of weighted values to pij
5: pij ←W (pij) +W (pθ).
6: end for
7: Render pij into TG.
8: end for

Algorithm 3 PARALLELUPDATE(TO : input texture; TG :
input texture; Tin : input texture; Tout : output fbo)

1: Gpij
// the advection vector of TG in the position of pij .

2: for each pixel pij of Tout in parallel do
3: Fetch the corresponding sites in Tin using texture lookup

and learn the position of the advection vector in TG.
4: Fetch the corresponding sites in TG using texture lookup

and use them to copy the value of the advection vector to
Gpij

.
5: if pij is a site according to TO then
6: Move pij based on Gpij .
7: end if
8: Render pij into Tout.
9: end for

of edge bundling. Next, we describe our implementation and
technical details. Algorithm 1 lays out the pipeline of PBEB.

Lines 1 to 14 of Algorithm 1 correspond to the initialization
of PBEB. Each edge ei of an input graph G is sampled with a
sample step σ. The sample points, namely sites xi, are stored
in a texture TI . We refer to this texture as an indexing texture.
It stores the 2D coordinates of xi by encoding the coordinates
of the sites with 4-component RGBA pixel values. In particular,
we intentionally subdivide each edge into an odd number of
segments so that a 4-component RGBA pixel value stores a
segment with 4 coordinate values (one segment consists of
2 points with a 2D coordinate value for each point), which
facilitates a relatively simple encoding. Hence, the width of
TI can be defined:

Iw =

pS
2

if pS

2 < max,

max otherwise,

(4)

where max is a predefined parameter to control the width of
an allocated texture to be not larger than the maximum texture
width allowed by WebGL systems. Recall that pS is the count
of all sites. The height Ih of the texture TI is then defined as:

Ih = ceil(
pS

2

max
), (5)

Additionally, we need to create a texture TO that records a
point in TI is either an endpoint or a site since endpoints of

Algorithm 4 PARALLELRESAMPLE(Tin : input texture;
Tout : output fbo)

1: | · | ← euclidean distance
2: H ← distance threshold
3: pren ← number of previous adjacent sites that are close

to the current site pij
4: nextn ← number of next adjacent sites that are close to

the current site pij
5: prepij ← the previous adjacent site of the current site pij
6: nextpij

← the next adjacent site of the current site pij
7: for each pixel pij of Tin in parallel do
8: while |prepij

− pij | < H do
9: prepij = the previous sites of prepij

10: pren++;
11: end while
12: while |nextpij

− pij | < H do
13: nextpij

= the next sites of prepij

14: nextn++;
15: end while
16: if pren <= nextn then
17: Move pij a small distance

|prepij−pij |
pren+1 towards prepij .

18: else
19: Move pij a small distance

|nextpij−pij |
nextn+1 towards

nextpij
.

20: end if
21: Render pij into Tin.
22: end for

edges and sites may overlap in some pixels.
Next, PBEB builds edge bundling by iteratively conducting

kernel density estimation through the steps of histogram
computing, gradient computing, site position updating, edge
resampling, and edge smoothing. The algorithm stops when it
reaches the predefined number of iteration steps.

First, in the step of histogram computing (Lines 17 to 21 of
Algorithm 1), similar to CUBu [10], we accumulate sites on
an image buffer. In our implementation, we render all the sites
of the graph into an FBO FH . The width and height of FH

are set to be the resolution of the display. FH is bound with
a 2D floating-point texture TH . After rendering, TH gives a
histogram, where the number of sites falling into every pixel
is recorded. The pixel’s value in the histogram is encoded
as either a R, G, or B value in TH . Here, we restrict the
rendering point size to be exactly 1 pixel, i.e., one site can
only be rendered in one pixel in TH . To accumulate the number
of rendering sites in TH , the source and destination factors of
the blending function must be set to be GL SRC COLOR. The
width and height of FH and TH are the same as the width and
height of the display resolution.

Second, after the histogram is built, we can compute the
normalized gradients by splatting a kernel function (Lines 23 to
28 of Algorithm 1). To do that in WebGL, we need to bind an
FBO FG with a 2D floating-point texture TG. The 2D gradient
values are encoded into the color components of the texture TG.
The kernel splatting is conducted in a customized fragment

Algorithm 5 PARALLELSMOOTH(TO : input texture; Tin :
input texture; Tout : output fbo)

1: {prepij} ← the previous adjacent sites of pij ({prepij}
and pij are in the same edge)

2: {nextpij
} ← the next adjacent sites of pij ({nextpij

} and
pij are in the same edge)

3: for each pixel pij of Tout in parallel do
4: Fetch the previous sites {prepij} of pij from Tin.
5: Fetch the next sites {nextpij} of pij from Tin.
6: Convolve the position of pij with {prepij

} and
{nextpij

}.
7: Render pij into Tout.
8: end for

Fig. 1. Visualizing a US Airlines dataset (2100 edges) using a node-link
diagram that can easily incur visual clutter.

shader program. TH is also passed to the GPU memory during
the rendering process. In the fragment shader program, kernel
splatting can be easily done by applying a Gaussian weighted
function W . Then, a gradient filter is used to compute the
normalized gradient for each pixel in TG. After rendering,
every color component of TG contains an advection vector for
later position updating. The width and height of FG and TG

are identical to the width and height of the display resolution.
Algorithm 2 shows the PARALLELGRADIENT fragment shader.

Third, we update the positions of the sites (Lines 30 to 34 of
Algorithm 1). Recall that we have created an indexing texture
TI and TO. We can update the position of each site of TI in a
customized fragment shader program with TI , TO, and TG as
inputs. We first make Tin = TI . We need another texture buffer
Tout to be bound with an FBO FP . We then pass Tin, TO, and
TG to the GPU memory and render the new positions as a color
component into Tout. Note the sizes of the aforementioned
textures TH and TG are identical to the display resolution,
while the width and the height of Tin and Tout are Iw and Ih,
respectively. The key to this step is the translation between
the texture coordinates and the indexes of sites (pixels). When
we encode a data set into a texture, a data point is accessed
through a 2D texture coordinates (x, y), where the x or y
component of the texture coordinate is typically between 0.0
and 1.0. If we encode a 2D n× t matrix into a 2D texture, the
transformation between an entry at the ith column and the jth
row of the matrix and its 2D texture coordinates (x, y) can be

(a) (b)

(c) (d)

Fig. 2. The visualization results of a US Airlines dataset (2100 edges) using (a) a web-based implementation of FDEB [3], (b) a web-based implementation of
MINGLE [4], (c) TBEB [5], and (d) our PBEB.

computed by

x = i/(n− 1), y = j/(t− 1). (6)

Accordingly, a 2D texture coordinate (x, y) is corresponding
to the entry (i, j):

i = ceil(x× n), j = ceil(y × t). (7)

We use this transformation to read the points from the
textures. In this step, the rendering resolution is set to be
Iw × Ih. In the fragment shader program, each pixel contains
the position of one segment (4-component RGBA value stores
two 2D sites). From the color component R and G or B and A
in Tin, we can gain the index of the gradient value in TG. Using
Equations 6 and 7 to translate the corresponding coordinate in
TG, we can retrieve the gradient value for this site. We ignore
the update of a point if its record in TO indicates it is an
endpoint. Algorithm 3 shows the PARALLELUPDATE fragment
shader. After rendering, Tout contains the updated position of
all sites and the original endpoints.

KDE-based methods can generate lattice artifacts. Hence,
resampling (Lines 36 to 40 of Algorithm 1) and smoothing
(Lines 42 to 47 of Algorithm 1) are applied to increase the
readability of the final drawing. The resampling and smoothing
can also be parallelized. Algorithm 4 shows the PARALLEL-
RESAMPLE fragment shader. Tout has been generated from
the position updating step. We need to create an FBO FR, and
bind it with Tin. In this step, Tout is the input texture, and
Tin is the output texture. In the resampling fragment shader
program, we first define a distance threshold H . For every site
pij , search forward along the edge to find the previous site

prepij
whose distance to pij is larger or equal to H . Count the

site number pren between pij and prepij
. So on and so forth

for the backward search to find nextpij
and nextn. We then

compare pren and nextn. If pren is smaller, we move pij

towards pren with a distance of
|prepij−pij |

pren+1 , and vice versa.
The smoothing step conducts a 1-D Laplacian smoothing on

each edge, i.e., convolves the position of a site with its adjacent
sites. Algorithm 5 shows the PARALLELSMOOTH fragment
shader. After writing the new positions to Tout, we swap Tin

and Tout for the next iteration. After the iterations, we bind the
output texture Tout into a Vertex Buffer Object (VBO). Then
we render the segments as polylines to the display. Because
the output texture and the VBO are all located in the GPU
memory, we can directly conduct rendering in GPU and avoid
the costly data transferring between CPU and GPU.

IV. RESULTS

A. Visualization

We compare PBEB with other web-based methods on their
visualization results. Figure 1 shows a US Airlines graph
using direct visualization of a node-link diagram. As shown in
Figure 1, the node-link diagram can easily incur visual clutter,
and it is relatively difficult to perceive the main airline patterns
from the graph.

Figure 2 shows the visualization results of the same graph
using the edge bundling methods, including a web-based
implementation of FDEB [3], a web-based implementation
of MINGLE [4], TBEB [5], and our PBEB. We can see
that, in general, the edge bundling results can more clearly
reveal relational patterns by grouping edges according to their

(a) (b)

Fig. 3. The visualization results of a France Airlines graph (17273 edges) using (a) node-link diagram and (b) our PBEB, where the PBEB result can effectively
alleviate the visual clutter observed in the node-link diagram, providing a clearer depiction of the main structure of the France Airlines graph.

similarities. For example, the highlighted area in Figure 1 is
visually occluded. In the edge bundling visualization results
shown in Figure 2, we can clearly perceive a “hub” in the center
of the highlighted area. Geographically, this hub is Atlanta.
From the visualization results of edge bundling methods, we
can learn that Atlanta is an airline hub that is used by multiple
airlines to concentrate passenger traffic and flight operations.

Moreover, the quality of TBEB (Figure 2 (c)) and PBEB
(Figure 2 (d)) are arguably better than FDEB and MINGLE
in terms of revealing subtle graph structure and details. From
Figure 2 (a), (c), and (d), we can see a major pattern
corresponding to the airline routes between the west coast of the
US and the Northeastern US. Specifically, one side of the airline
routes connects the Northeastern US, and then the routes split
into two groups. One connects to the Northwestern US (mainly
Washington), and the other connects to the Southwestern
US (mainly California). There is a very subtle detail in
this pattern. From the results of FDEB and MINGLE, we
might misunderstand that the airline routes directly connect
Northwestern and Southwestern with Northeastern. TBEB
(Figure 2 (c)) and PBEB (Figure 2 (d)) show that this is
not the case. Some airlines first route to another airline hub,
which is geographically the Indianapolis. This subtle pattern
cannot be perceived in Figure 2 (a) and (b). We can see that
the results generated by FDEB and MINGLE have significantly
reduced the visual clutter compared to the original node-link
diagram. However, some dense areas still have visual clutter.
That may mislead users in some subtle details. TBEB and
PBEB reveal high-level relational patterns and preserve more
subtle graph structures, avoiding the problem of FDEB and
MINGLE.

The complexity of PBEB is independent of the number of
edges and vertices as its complexity is O(pI ·pN ·pS), where pI ,
pN , and pS are the image resolution, the number of bundling
iterations and the counts of all sites, respectively. However, the
model of FDEB and TBEB cannot enable an edge bundling
visualization with a very large graph because of the texture size
limitation. PBEB accumulates sample points on pixels such
that a density histogram is generated. Gradient calculation and
advection can be conducted based on the density histogram.
Therefore, PBEB can avoid the issue of FDEB and TBEB and
improve the visualization of large graphs on a web browser.
Figure 3 shows the visualization results of a France Airlines
graph (17273 edges) using the node-link diagram and our
PBEB methods. In Figure 3(a), we can see a significant degree
of complex node and edge overlap and intertwine, resulting in
a visual clutter that makes it hard to comprehend the graph.
As shown in Figure 3(b), PBEB can effectively bundle edges
based on their similarities, leading to a substantial reduction
in visual clutter and a clear depiction of the core structure of
the France Airlines graph.

Next, we show a visualization using PBEB on a large US
migration graph with approximately half of a million edges
(545881 edges). To the best of our knowledge, PBEB is the
first web-based edge bundling method to handle such a large
graph on web browsers. Figure 4 shows the result of the node-
link diagram and PBEB methods using a Google Chrome
browser. In Figure 4 (a), a considerable number of edges incur
severe visual clutter. By using PBEB, the high-level patterns
of migration can be perceived. Since PBEB uses the shader
rendering method [10], the brighter area means the denser place
where the edges converge. We can observe north-south and east-

(a) (b)

Fig. 4. The visualization results of a large US migration graph (545881 edges) using (a) node-link diagram and (b) our PBEB, where the PBEB result can
effectively alleviate the visual clutter observed in the node-link diagram, providing a clearer depiction of the main structure of the large US migration graph.

TABLE I
PERFORMANCE COMPARISON USING THE US AIRLINES, FRANCE AIRLINES, AND US MIGRATIONS GRAPHS ON A DESKTOP.

Graph FDEB FDEB FDEB TBEB MINGLE FFTEB PBEB
(CPU) (CUDA) (D3) (JavaScript) (CUDA)

Sites T ime(ms) Sites T ime(ms) Sites T ime(ms) Sites T ime(ms) Sites T ime(ms) Sites T ime(ms) Sites T ime(ms)

US Airlines 270K 900 270K 105 270K 1.08K 270K 15 270K 169.75 105K 19 48.8K 5
France Airlines 2.2M 2.1M 2.2M 926 2.2M n/a 2.2M n/a 2.2M 1.04K 864K 380 557K 20
Large US migrations 70M n/a 70M n/a 70M n/a 70M n/a 70M 93.6K 6.4M 5.2K 2.4M 103

west migration patterns and learn that north-south migrations
mainly happened in the Mideast US, while the pattern is not
salient in the Western US. This observation demonstrates that
PBEB is effective in visualizing large graphs using web-based
techniques, whereas the original node-link diagram and other
edge bundling implementations cannot achieve this on web-
based platforms.

B. Performance Evaluation

We evaluate the performance of our PBEB by comparing
the following methods:

• FDEB using a CPU implementation [23],
• FDEB using a CUDA implementation [27],
• FDEB using a D3 implementation [3],
• TBEB using a WebGL implementation [5],
• MINGLE using a JavaScript implementation [4],
• FFTEB using a CUDA implementation [11],
• our PBEB using a WebGL implementation.

We use the following device in the experiment:
• a desktop with an 8X Intel Core i7 3.60GHz CPU and

an NVIDIA GeForce GTX 1080 ti GPU,
• a Nexus 9 tablet with a dual-core Denver 2.3GHz CPU

and a Kepler DX1 GPU.
We use a Google Chrome web browser to generate the results
for the web-based edge bundling applications. We use the
following three typical graph datasets in the experiment:

• a US Airlines dataset with 2100 edges and 235 vertices,
• a France Airlines dataset with 17273 edges and 34194

vertices,

• a US migrations dataset with 545881 edges and 3075
vertices.

Table I shows the performance comparison on the desktop,
where Sites are the number of sample points generated in
the sampling step, and Time is the average elapsed time that
one iteration takes for similarity (or compatibility) calculation,
bundling, and rendering. For FDEB, TBEB, and MINGLE,
each edge has the same number of sites in every iteration.
For FFTEB and PBEB, uniform sampling is used. We use a
sample step of 5% of the display size to sample each edge in
the implementation of PBEB. For FFTEB, we use the uniform
sampling strategy of CUBu [10]. Hence, the number of sites
of different methods may be different. The timing result is
formally calculated as:

Time =
pT
pN

, (8)

where pT is the total elapsed time of an edge bundling
application to generate the final graph drawing, and pN
is the number of bundling iterations. For some existing
implementations that only render once in the final result, we
scale their rendering time according to the number of iterations
to avoid bias. As shown in Table I, the performance of TBEB
is significantly better than the CPU- and JavaScript-based
methods. PBEB outperforms other methods on all datasets and
achieves interactive framerates on the datasets of US Airlines
and France Airlines. For the large US migrations dataset,
the PBEB method achieves approximately 50× speedups to
the fastest state-of-the-art method, FFTEB. More importantly,

TABLE II
PERFORMANCE COMPARISON USING THE US AIRLINES AND FRANCE

AIRLINES GRAPHS ON A TABLET.

Graph FDEB (D3) TBEB MINGLE (JavaScript) PBEB
Sites T ime(ms) Sites T ime(ms) Sites T ime(ms) Sites T ime(ms)

US Airlines 270K 3423 270K 49 270K 664 48.8K 30
France airlines 2.2M n/a 2.2M n/a 2.2M 2653 557K 60

PBEB can be deployed on web-based platforms, which are
more portable.

Next, we compare PBEB with other web-based methods,
namely FDEB using D3 [3], MINGLE using JavaScript [4],
and TBEB [5]. This evaluation takes place within a Chrome
browser on the Nexus 9 tablet, as all these methods are designed
for web browsers and are compatible with tablet devices. We
use the datasets of US Airlines and France Airlines. In our
experiment, we find that all the methods cannot run the Large
US migrations and skip the comparison on this dataset. Table II
shows that PBEB is more significantly efficient than other web-
based edge bundling methods. In the case of the US Airlines
graph, PBEB demonstrates approximately a 114× speedup
compared to FDEB and a 22× speedup compared to MINGLE.
PBEB achieves a marginal performance gain, i.e., about a 1.6×
speedup, compared to TBEB for US Airlines. However, when
visualizing the France Airlines graph, it exceeds the practical
scale limits for both TBEB and FDEB. Only MINGLE and
our PBEB remain capable of visualizing this graph, and our
PBEB attends can still visualize it, and our PBEB achieves
approximately a 44× speedup compared to MINGLE.

The findings presented in Tables I and II showcase the
adaptability and performance of our framework. PBEB operates
effectively not only on high-end machines equipped with
dedicated graphics cards but also on ubiquitous smart devices,
even those with comparatively constrained graph processing
capabilities. The results indicate that our PBEB surpasses
existing methods in terms of both performance efficiency and
the capacity to handle larger graphs.

V. CONCLUSION

We have introduced PBEB, a real-time edge bundling
framework designed for the effective visualization of large
graphs on web-based platforms. PBEB has leveraged the
concept of kernel density estimation to address visual clutter
by effectively bundling the massive edges of a large graph,
thereby revealing the overall graph structures and intricate
details of the graph in visualizations. Our framework harnesses
the power of parallel processing through WebGL’s texture
capabilities and shader programming, ensuring interactive edge
bundling visualization on both desktop computers and mobile
devices. Notably, when compared to existing web-based edge
bundling methods and applications, our solution significantly
outperforms them, achieving several-fold speed improvements
when handling graphs ranging from thousands to hundreds of
thousands of edges. Our approach facilitates the interactive
exploration of large graphs on mobile devices and significantly

enhances the interactivity and usability of edge bundling across
diverse platforms.

In the future, we aim to incorporate attribute-based edge
bundling visualization in our framework, allowing it to con-
vey more precise attributes and topological information of
underlying graphs on web platforms. We will explore methods
(e.g., [28]) for assessing the quality and precision of visual
representations achieved through edge bundling. Additionally,
we plan to explore the integration of various graph layouts with
our work, broadening the range of available graph visualization
styles. We would also like to extend the utilization of the
texture feature and acceleration strategies to more visualization
applications, such as interactive force-directed graph layouts
and interactive scatterplots, providing a GPU-based unified
framework for visualization applications on web platforms.
Last but not least, we recognize that visualizing more extensive
graphs, such as those containing billions or more edges, on a
single device can pose a significant challenge that is expected
to attract more attention as graph sizes continue to experience
rapid growth.

ACKNOWLEDGMENT

This research has been sponsored in part by the National
Science Foundation grant IIS-1652846.

REFERENCES

[1] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman, “Learn-
ing combinatorial optimization on graphs: A survey with applications to
networking,” IEEE Access, vol. 8, pp. 120 388–120 416, 2020.

[2] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2301–2309, 2011.

[3] “d3.ForceBundle,” https://github.com/upphiminn/d3.ForceBundle.
[4] “MingleBundle,” https://github.com/philogb/mingle.
[5] J. Wu, L. Yu, and H. Yu, “Texture-based edge bundling: A web-based

approach for interactively visualizing large graphs,” in 2015 IEEE
International Conference on Big Data (Big Data). IEEE, 2015, pp.
2501–2508.

[6] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. Sellis,
“GraphVizdb: A scalable platform for interactive large graph visualization,”
in 2016 IEEE 32nd International Conference on Data Engineering
(ICDE). IEEE, 2016, pp. 1342–1345.

[7] A. Lhuillier, C. Hurter, and A. Telea, “State of the art in edge and trail
bundling techniques,” Computer Graphics Forum, vol. 36, no. 3, pp.
619–645, 2017.

[8] C. Hurter, O. Ersoy, and A. Telea, “Graph bundling by kernel density
estimation,” Computer Graphics Forum, vol. 31, no. 3pt1, pp. 865–874,
2012.

[9] V. Peysakhovich, C. Hurter, and A. Telea, “Attribute-driven edge bundling
for general graphs with applications in trail analysis,” in 2015 IEEE
Pacific visualization symposium (PacificVis). IEEE, 2015, pp. 39–46.

[10] M. van der Zwan, V. Codreanu, and A. Telea, “CUBu: universal real-
time bundling for large graphs,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 12, pp. 2550–2563, 2016.

[11] A. Lhuillier, C. Hurter, and A. Telea, “FFTEB: Edge bundling of huge
graphs by the fast fourier transform,” in Pacific Visualization Symposium
(PacificVis), 2017 IEEE. IEEE, 2017, pp. 190–199.

[12] S. Liu, W. Cui, Y. Wu, and M. Liu, “A survey on information
visualization: recent advances and challenges,” The Visual Computer,
vol. 30, no. 12, pp. 1373–1393, Dec 2014. [Online]. Available:
https://doi.org/10.1007/s00371-013-0892-3

[13] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner, “Visual analysis of large graphs:
State-of-the-art and future research challenges,” Computer Graphics
Forum, vol. 30, no. 6, pp. 1719–1749, 2011.

[14] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “The state of the art in
visualizing dynamic graphs.” EuroVis (STARs), 2014.

[15] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Transactions
on Visualization and Computer Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[16] C. Vehlow, F. Beck, and D. Weiskopf, “The state of the art in visualizing
group structures in graphs,” in EuroVis - STARs, 2015.

[17] M. Bostock and J. Heer, “Protovis: A graphical toolkit for visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 6, pp. 1121–1128, 2009.

[18] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger, “Multilevel
agglomerative edge bundling for visualizing large graphs,” in 2011 IEEE
Pacific Visualization Symposium. IEEE, 2011, pp. 187–194.

[19] A. Telea and O. Ersoy, “Image-based edge bundles: Simplified visual-
ization of large graphs,” Computer Graphics Forum, vol. 29, no. 3, pp.
843–852, 2010.

[20] J. Böttger, A. Schäfer, G. Lohmann, A. Villringer, and D. S. Margulies,
“Three-dimensional mean-shift edge bundling for the visualization of
functional connectivity in the brain,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 3, pp. 471–480, 2014.

[21] J. Wu, J. Zeng, F. Zhu, and H. Yu, “MLSEB: Edge bundling using
moving least squares approximation,” in Graph Drawing and Network
Visualization: 25th International Symposium, GD 2017, Boston, MA,
USA, September 25-27, 2017. Springer, 2018, pp. 379–393.

[22] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006.

[23] D. Holten and J. J. Van Wijk, “Force-directed edge bundling for graph
visualization,” Computer Graphics Forum, vol. 28, no. 3, pp. 983–990,
2009.

[24] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[25] M. Pharr, R. Fernando, and T. Sweeney, GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-Purpose Com-
putation. Addison-Wesley Professional, 2005.

[26] Q. H. Nguyen, P. Eades, and S.-H. Hong, “Towards faithful graph
visualizations,” arXiv preprint arXiv:1701.00921, 2017.

[27] D. Zhu, K. Wu, D. Guo, and Y. Chen, “Parallelized force-directed
edge bundling on the GPU,” in 2012 11th International Symposium on
Distributed Computing and Applications to Business, Engineering &
Science. IEEE, 2012, pp. 52–56.

[28] J. Wu, F. Zhu, X. Liu, and H. Yu, “An information-theoretic framework
for evaluating edge bundling visualization,” Entropy, vol. 20, no. 9, p.
625, 2018.

